Discrete Random Variables

A r.v. $X: \Omega \rightarrow \mathbb{R}$ is discrete if there exists a set $S_X = \{x_1, x_2, x_3, \ldots\}$ such that for all $\omega \in \Omega$, $X(\omega) \in S_X$. If S_X is a finite set, then X is a finite r.v.

Since S_X is discrete, we can consider events in Ω of the form $A_k = \{\omega \in \Omega \mid X(\omega) = x_k\}$. These events will form a partition of Ω.

In fact, all events involving X can be computed from the $P[A_k]$.

The probability mass function (PMF) of a discrete r.v. X is

$$p_X(x) = \begin{cases} P[X = x] = P[\{\omega \in \Omega : X(\omega) = x\}] = \begin{cases} P[A_k] & \text{if } x = x_k \\ 0 & \text{otherwise} \end{cases} & \text{if } x = x_k \end{cases}$$
The function \(p : \mathbb{R} \to \mathbb{R} \) is a valid PMF iff

1. the support of \(p \) is discrete, \(S_x = \{ x \in \mathbb{R} : p(x) > 0 \} \)
2. \(p(x) \geq 0 \), \(\forall x \in \mathbb{R} \),
3. \(\sum_{x \in S_x} p(x) = 1 \).

The CDF of \(X \) if \(X \) is discrete w/ PMF \(p_x(.) \) is

\[
F_X(x) = P[X \leq x] = \sum_{x_k \in S_x} p(x_k) \quad x_k \leq x
\]

If \(u(x) \) is the right continuous step function: \(u(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases} \),

then \(F_X(x) = \sum_{x_k \in S_x} p(x_k) u(x-x_k) \).
To completely describe discrete X, requires the PMF or the CDF.

Sometimes, need to **summarize** distribution of X.

The mean or expected value of X is

$$M_X = E[X] = \sum_{x \in X} x P_X(x) = \sum_k x_k P_X(x_k).$$

This will be well defined provided that $\sum_k |x_k| P_X(x_k) < \infty$.

If X is discrete and $g: \mathbb{R} \rightarrow \mathbb{R}$, then $Z = g(X)$ is also a discrete r.v.

We can write the mean of Z w/o explicit reference to the distribution of Z.

$$E[Z] = \sum_{x \in X} g(x_k) P_X(x_k).$$

The distribution of $X - E[X]$ would tell us how much X deviates from its mean. $E[X - E[X]] = 0$. Instead, could look at $|X - E[X]|$. Instead, usually look at $(X - E[X])^2$.

2015-09-03 p3
\[\sigma_x^2 = \text{Var}[X] = E[(X - E[X])^2] \quad \text{(Variance)} \]

\[\sigma_x = \sqrt{\text{Var}[X]} \quad \text{(Standard Deviation) \ (Same units as } X) \]

Expectation is \underline{linear}.

\[E[aX + bY] = aE[X] + bE[Y] \]

\[\text{VAR}[X] = E[(X - E[X])^2] = E[X^2 - 2E[X]X + (E[X])^2] \]

\[= E[X^2] - 2E[X]E[X] + \underbrace{E[(E[X])^2]}_{2\text{nd Moment of } X} \]

\[= E[X^2] - (E[X])^2 \quad \text{\uparrow \ mean\ of \ } X \]
Bernoulli RV

Let A be an event defined on Ω.

The Bernoulli RV is

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{otherwise.} \end{cases}$$

If X is Bernoulli....

$$p_X(x) = \begin{cases} p[A] & x = 1 \\ p[A^c] = 1-p[A] & x = 0 \\ 0 & \text{otherwise} \end{cases}$$

1. Let $\rho = p[A]$.

 The Bernoulli r.v. has

 one parameter, ρ.

2. CDF

 $$F_X(x) = (1-\rho)u(x) + \rho u(x-1)$$

3. $E[X] = \sum_{x \in S_X} x p_X(x) = 0 \cdot p[A^c] + 1 \cdot p[A] = p[A] = p[X=1] = \rho$.

2015-09-03 ρ5
Binomial RV

Number of successes in \(n \) independent trials.

Two parameters: \(p = \text{P}[A] \) for one trial, \(n = \# \text{ of trials} \)

\(S_X = \{0, 1, 2, \ldots, n\} \)

\[P_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{for } k \leq 0, 1, 2, \ldots, n \geq 3 \\ 0 & \text{otherwise.} \end{cases} \]

\(\binom{n}{k} \) is called the \underline{binomial coefficient} because

\[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} . \]

\[\sum_{k=0}^{n} P_X(k) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = (p + (1-p))^n = 1^n = 1 . \]
\[E[X] = \sum_{k=0}^{n} \binom{n}{k} \rho^k (1-\rho)^{n-k} = \sum_{k=1}^{n} \frac{n!}{k! (n-k)!} \rho^k (1-\rho)^{n-k} \]

\[= n\rho \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} \rho^{k-1} (1-\rho)^{n-k} \]

\[= n\rho \sum_{k'=0}^{n-1} \frac{(n-1)!}{k'! (n-1-k')!} \rho^{k'} (1-\rho)^{n-1-k'} \]

\[= n\rho \sum_{k'=0}^{n-1} \binom{n-1}{k'} \rho^{k'} (1-\rho)^{n-1-k'} \]

PMF of a binomial

\[n-1, \rho \]

Must sum to 1

Variance

\[Var(X) = \sum_{k=0}^{n} k^2 \binom{n}{k} \rho^k (1-\rho)^{n-k} = n\rho \sum_{k=0}^{n} k^2 \frac{n!}{(n-k)! k!} \rho^k (1-\rho)^{n-k} \]

\[= n\rho \sum_{k'=0}^{n-1} (k'+1) \binom{n-1}{k'} \rho^{k'} (1-\rho)^{n-1-k'} \]

\[= n\rho \left[\sum_{k'=0}^{n-1} k' \binom{n-1}{k'} \rho^{k'} (1-\rho)^{n-1-k'} + \binom{n-1}{k'} \rho^{n-1-k'} \right] \]

\[= n\rho \left[(n-1)\rho + 1 \right] = n\rho (n\rho + (1-\rho)) \]
\[\text{Var}[X] = E[X^2] - (E[X])^2 \]
\[= np(np + (1-p)) - (np)^2 \]
\[= np(1-p) \]

Poisson

Events that occur at an average rate \(\lambda \) events per time interval, events occur "at random".

If \(X \) is the number of events that occur in one time interval then \(X \) is a Poisson r.v.

\[S_X = \{0,1,2,3,\ldots\} \]

\[p_X(k) = \begin{cases} \frac{\lambda^k e^{-\lambda}}{k!} & k \in \{0,1,2,\ldots\} \\ 0 & \text{otherwise.} \end{cases} \]

Poisson also used as an approximation of the binomial, when \(p \) is small and \(n \) is large (take \(\lambda = np \)).

2015-09-03 P3
\[\sum_{k=0}^{\infty} p_X(k) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \]

Taylor Series expansion for \(e^x \)

\[= e^{-\lambda} \cdot e^\lambda = 1 \]

\[E[X] = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^{k'}}{k'!} = \lambda \]

PMF of Poisson

\[E[X^2] = \sum_{k=0}^{\infty} k^2 e^{-\lambda} \frac{\lambda^k}{k!} = \lambda \sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} \]

\[= \lambda (\lambda + 1) = \lambda^2 + \lambda \]

\[\text{Var}[X] = E[X^2] - E[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \]
Ex Call center. Calls arrive “at random” with an average rate of 4 calls/minute.

(a) What is \(P[\text{more than 4 calls in 10 sec}] \)?
(b) What is \(P[\text{fewer than 5 calls in 2 min}] \)?

(a) \(P[\text{more than 4 calls /10 sec}] \).

For 10 second intervals,
\[
\lambda = \left(4 \text{ calls/min} \right) \left(\frac{1 \text{ min}}{60 \text{ sec}} \right) (10 \text{ sec}) = \frac{2}{3} \text{ call/10 sec}
\]

\[
P[X > 4] = 1 - P[X \leq 4] = 1 - \sum_{k=0}^{4} \frac{\left(\frac{2}{3}\right)^k}{k!} e^{-2/3} = 6.3 \times 10^{-4}
\]

(b) 2 min \(\rightarrow \lambda = 8 \text{ calls/2 min} \)

\[
P[X \leq 5] = \sum_{k=0}^{5} \frac{8^k}{k!} (e^{-8}) = 0.10
\]